

DÜNNSCHICHTVERDAMPFER, SYSTEM ETF

as Dünnschichtverdampfersystem ETF wird zur schonenden partiellen Verdampfung flüssiger Mischungen eingesetzt, speziell wenn Anforderungen - z.B. hohe Viskositäten oder sehr kurze Verweilzeiten - über die Möglichkeiten klassischer Verdampfer und auch des Fallfilmverdampfersystems EFF hinausgehen.

Die Rohlösung wird aus einer Vorlage oder kontinuierlich in den Verdampfer eingeleitet und mit einem Wischersystem gleichmäßig als dünner Film über den Umfang verteilt. Die Leichtsieder werden aus dem herabfließenden und ständig neu durch das Wischersystem auf der Verdampferfläche verteilten Film partiell abgedampft, kondensieren als Destillat an dem außenliegenden Kondensator und fließen von dort ab. Analog dazu fließt das Konzentrat entlang der beheizten Wandung aus dem Verdampfer. Das Destillat und Konzentrat werden entweder in einer Vorlage aufgefangen oder über eine Pumpe kontinuierlich ausgetragen.

Zur Einstellung der gewünschten Prozessbedingungen wie Druck und Temperatur werden Vakuumpumpen sowie zur Beheizung, Verdampfung und Kondensation Thermostate (Labor- und Pilotmaßstab) eingesetzt. Im Produktionsmaßstab greift man auf klassische Energieträger wie Dampf, Thermalöl beziehungsweise Kühlwasser, Sole und Glykol zurück. Über eine Kühlfalle wird unerwünschter Eintrag von Leichtsiedern aus dem Abgasstrom in das Vakuumpumpsystem reduziert.

- Verdampfungsapparate mit geringem Hold-Up und entsprechend kurzer Verweilzeit mit enger Verweilzeitverteilung und schonenden Betriebsbedingungen für:
 - Labor- und Pilotsysteme aus Edelstahl mit Borosilikatglas 3.3 in standardisierter Ausführung, optional prozessspezifische Anpassungen
 - Produktionssysteme aus Edelstahl in prozessund kundenspezifischer Ausführung
- Modular ergänzende Verdampfersysteme nach Prozessanforderungen, beispielsweise:
 - Vor- und nachgeschaltete Verdampfer,
 z.B. System EFF-ETF, oder auch Flash-Box
 - Rektifikationskolonne zur Aufkonzentrierung der Brüden, System ETR
- Prozess- und kundenspezifische Richtlinien,z.B.
 ATEX, DGRL, FDA, GAMP, ASME, UL-Normen.
- Geeignet für Medien mit erhöhten Anforderungen:
 - Viskose und hochviskose Medien
 - Schäumende Medien
 - Wärmeempfindliche Medien
 - Feststoffhaltige Medien
 - Höherschmelzende Medien
- Machbarkeitsstudien oder vorhandene Expertise für typische Anwendungen:
 - Fettsäuren und Fettsäurederivate
 - Nebenprodukte aus der Speiseöl-Herstellung
 - Spezialpoly- oder Oligomere
 - Pharma- und Kosmetik Produkte
 - Specialty Chemicals
 - Duft- und Aromastoffe

DÜNNSCHICHTVERDAMPFER, SYSTEM ETF TESTDESTILLATION SOWIE LABOR- UND PILOTVERDAMPFERSYSTEME

Für viele Anwendungen sind neben der Zusammensetzung von Destillat und/oder Rückstand bzw. Konzerntrat auch Produkteigenschaften wie Geruch und Farbe relevant. Ebenfalls müssen mögliche Effekte, die bei der Verdampfung auftreten können, wie z. B. Schaumbildung oder Fouling auf der Wärmeübertragungs-

fläche berücksichtigt werden. Die letztgenannten Eigenschaften lassen sich nicht theoretisch ermitteln oder abschätzen, sondern erfordern die Möglichkeit einer visuellen Beurteilung des Verdampfungsprozesses. Dies lässt sich am besten in Glasanlagen von COROSYS umsetzen, die nach einem Baukastensystem individuell zusammengestellt werden können.

Ist die prinzipielle Machbarkeit festgestellt, sind zur Aus-

legung einer Produktionsanlage die Prozessparameter zu verifizieren, d.h. Wärmeübergang und maximale flächenbezogene Verdampfungsraten bzw. praktische Stufenzahl sowie die erreichbaren Ausbeuten und Qualitäten zu bestimmen. Hierfür hat COROSYS eine standardisierte Baureihe von Pilotanlagen aus Edelstahl (optional auch Sonderwerkstoffe) in verschiedenen Größen und Ausführungen zur Auswahl.

Für neue Verdampfungs- oder Destillationsaufgaben bietet COROSYS in-house Dienstleistungen beginnend bei der Literaturrecherche über thermodynamische Simulationen und Laborversuche bis hin zu Pilotierungen von Einzelsystemen oder Kombinationen von Fallfilm-(EFF), Dünnschicht-(ETF) und Kurzwegverdampfer (ESF), wenn erforderlich auch in Kombination mit Rektifikation (ERF) an.

Die Hauptziele und Möglichkeiten von Vorstudien/Testdestillationen sowie Labor- und Pilotanlagen sind nochmals in der nachfolgenden Tabelle kurz und übersichtlich zusammengefasst:

VORSTUDIEN/TESTDESTILLATIONEN	LABORSYSTEME	PILOTSYSTEME
Literatur-/Patentrecherche Bestimmung von Stoffdaten Thermodynamische Modellierung von Verdampfung/Rektifikation	Machbarkeitsüberprüfung	Detaillierte Prozessdatenermittlung basierend auf Machbarkeitsstudie und vorabgestimmtem Verdampfersystem
Edelstahl mit Borosilikatglas 3.3	Edelstahl mit Borosilikatglas 3.3, optional andere Werkstoffe	Edelstahl, optional andere Werkstoffe
Versuche zur Festellung der Machbarkeit / Trennschärfe	Laborversuche meist mit einem vorausgewähl- ten Filmverdampfersystem	Engineering der Produktionsanlage mit Di- mensionierung der Apparate und Medien
Vergleich der verschiedenen Filmverdampfersysteme und anschließende Vorauswahl	Bestimmung der Richtprozessparameter sowie erreichbaren Ausbeuten und Qualitäten	Detaillierte Bestimmung der Prozess-para- meter sowie erreichbaren Ausbeuten und Qualitäten
Optische Begutachtung des Systemverhaltens (Farbe, Geruch, Schaum, Feststoffe, Ablagerungen,)	Berücksichtigung und optische Begutachtung des Systemverhaltens (Farbe, Geruch, Schaum, Feststoffe,)	Berücksichtigung des Systemverhaltens (Farbe, Geruch, Schaum, Feststoffe, Ablagerungen,)
Abstimmung der Analytik	Mustermengen oder Kleinstproduktionsmengen	Größere Mustermengen oder Kleinproduk- tionsmengen

DÜNNSCHICHTVERDAMPFER, SYSTEM ETF STANDARDMODULE UND OPTIONEN

Dünnschichtverdampfer für den Labor- und Pilotbereich können aus zahlreichen Modulen und Optionen zusammengestellt werden, die in der nachfolgende Tabelle aufgelistet sind und damit die Konzepterstellung unserer Kunden unterstützen. Für eine detaillierte Charakterisierung mit Prozessanforderungen steht ergänzend der Fragebogen für Verdampferprozesse zur Verfügung.

TECHNISCHE SPEZIFIKATION INDUSTRIELLE VERDAMPFER

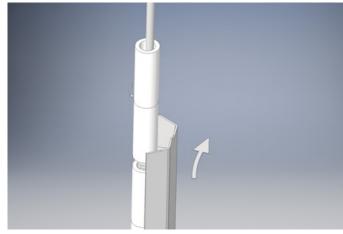
BEREICH	VERDAMPFER	AUSTAUSCHFLÄCHE	DURCHMESSER	LÄNGE BEHEIZT	MATERIAL	FEEDBEREICH
		[m²]	[DN]	[mm]		[kg/h]
Labor	ETF 0002-G	0,02 m²	DN 40	160	Edelstahl / Borosilikatglas 3.3	0,03 - 0,6
Labor	ETF 0006-G	0,06 m²	DN 80	240	Edelstahl / Borosilikatglas 3.3	0,2 - 1,5
Pilot	ETF 0006-S	0,06 m²	DN 80	240	Edelstahl	0,2 - 6,0
Pilot	ETF 0012-S	0,12 m²	DN 125	310	Edelstahl	1,0 - 12
Pilot	ETF 0030-S	0,3 m²	DN 200	480	Edelstahl	2,0 - 30
Pilot	ETF 0060-S	0,6 m²	DN 250	760	Edelstahl	2,5 - 60
Pilot	ETF 0120-S	1,2 m²	DN 300	1.270	Edelstahl	5 - 120

DEDEICH

BEREICH	OP	rion
Richtlinien		zul. Betriebsbedingungen (Produkt)
		/ barg &/ °C
		ATEX-Richtlinie 2014/34EU,
		EX-Zone/ (innen/außen), II, T
		GMP-Richtlinien 2014/34EU,
		Sonstige Richtlinien
Werkstoff		G - Edelstahl (1.4571/1.4404)/
		Borosilikatglas 3.3
		S - Edelstahl (1.4571/1.4404)
		X - alternativer Werkstoff
Feed		F1 - Dosiertropftrichter
		F2 - Pumpe
		F3 - Vorlage für Pumpbetrieb
		F5 - Flash-Box für Pumpbetrieb
		FX - andere Feedoptionen
Verdampfer		E1R - Wischer- und Verteilersystem, Typ Rollen
		E1P - Wischer- und Verteilersystem, Typ Profil
		E2L - Wellendichtring
		E2M - Magnetkupplung
		E2X - abweichendes Wellenabdichtungssys-
		tem
		E3G - Austrag gravimetrisch
		E3S - optional Austrag über Förderschnecke
Vakuumsystem		V1 - Drehschieberpumpe, ca. 0,1 - 10 mbara
		V2 - Membranvakuumpumpe, ca. 10 - 1.000
		mbara
		VX - Kombination andere Vakuumpumpen, ge-
		wünschte Menge Nm³/h und Betriebsdruck
		mbara

BEREICH	OP.	TION
Kühlfalle		C1 - Kühlfalle, Boro 3.3, für Trockeneis oder flüssigen Stickstoff
		C2 - Kühlfalle, SS, für Trockeneis oder flüssigen Stickstoff
		C3 - Kühlfalle, SS/Boro 3.3, elektrisch
Austrag Konz. &		A1 - Austrag in Spinne (3-fach)
Destillat		A2 - Austrag in Glaskolben
		A3 - Austrag in Schnittmeßgefäß
		A4 - Austragspumpe
Temperierung		T1 - Feed
		T2 - Verdampfer
		T3 - Kondensator
		T4 - Kühlfalle
		T5 - Austrag Destillat
		T6 - Austrag Konzentrat
		TX - Andere
Sonstiges		S1 - Gestell Edelstahl, fahrbar, mit Auffangwan-
		ne, L, P ohne Schutzverkleidung
		S1X - gewünschte Abweichun-
		gen
		S2 - Manuelle Bedienung, örtliche Anzeige Tem-
		peratur & Druck, L, P Not-Aus Schalter
		S2X - gewünschte Abweichungen

DÜNNSCHICHTVERDAMPFER, SYSTEM ETF VERDAMPFERSYSTEME IM PRODUKTIONSMASSSTAB


Produktionsanlagen werden üblicherweise prozessspezifisch dimensioniert, meist auf der Basis von Pilotversuchen. Typische Verdampfungsleistungen der industriellen ETF Verdampfer beginnen bei einigen Kilogramm bis hin zu mehreren Tonnen pro Stunde. In Abhängigkeit von Produkt und Aufgabenstellung stehen verschiedene Wischersysteme zur Verfügung.

seitigen Planungsaufwand und zum anderen vor allem die Aufbau- und Inbetriebnahmedauer vor Ort beim Kunden.

Die Produktionsanlagen werden bevorzugt als Package-

Unit ausgeführt, dies reduziert zum einen den kunden-

Die Wischersysteme sind fliegend gelagert, optional mit dynamischen Tropfenabscheidern sowie mit doppeltwirkender Gleitringdichtung zur Abdichtung der Wischerkorbwelle gegen Atmosphäre ausgestattet. Grundsätzlich sind auch eine Feinbearbeitung der produktberührenden Flächen sowie der Einsatz alternativer Werkstoffe möglich.

Der Bau der Produktionssysteme erfolgt unter Beachtung der erforderlichen Richtlinien wie DGRL 2014/68 EU oder ASME, ATEX 2014/34 EU, UL-Normen, GMP-Richtlinien, TA-Luft und der Maschinenrichtlinie 2006/42/EG.

TECHNISCHE SPEZIFIKATION LABOR- UND PILOTVERDAMPFER

BEREICH	VERDAMPFER	AUSTAUSCHFLÄCHE	DURCHMESSER	LÄNGE BEHEIZT	LÄNGE GESAMT	MATERIAL
		[m²]	[DN]	[mm]	[mm]	
Industrie	ETF 0120-S	1,2 m²	DN 300	1.270	2.800	Edelstahl
Industrie	ETF 0200-S	2,0 m²	DN 400	1.590	3.385	Edelstahl
Industrie	ETF 0400-S	4,0 m²	DN 700	1.820	4.130	Edelstahl
Industrie	ETF 0600-S	6,0 m²	DN 700	2.730	5.040	Edelstahl
Industrie	ETF 0900-S	9,0 m²	DN 1000	2.870	5.685	Edelstahl
Industrie	ETF 1200-S	12,0 m²	DN 1000	3.820	6.640	Edelstahl

Größere Verdampfer erhalten Sie auf Anfrage.