

FALLFILMVERDAMPFER, SYSTEM EFF

as Fallfilmverdampfersystem EFF wird zur schonenden partiellen Verdampfung flüssiger Mischungen eingesetzt, speziell wenn Anforderungen - z.B. niedrige Betriebsdrücke bei hohen Abdampfmengen - über die Möglichkeiten klassischer Verdampfer hinausgehen.

Die Rohlösung wird aus einer Vorlage oder kontinuierlich in den Verdampfer eingeleitet und mit einem speziellen Verteilersystem gleichmäßig als dünner Film über den Umfang der Verdampferrohre verteilt. Die Leichtsieder werden aus dem herabfließenden Film partiell abgedampft, strömen mit dem Konzentrat in den Sumpf des Fallfilmverdampfers und werden als Dampf zur Kondensation zu dem außenliegenden Kondensator geleitet. Aus dem Kondensator fließt das Destillat ab.

Analog dazu fließt die nicht verdampfte Flüssigkeit entlang der Fallfilmverdampferrohre, wird durch die Abdampfung kontinuierlich aufkonzentriert und fließt schließlich als Konzentrat in den Verdampfersumpf und von dort aus dem Verdampfer. Konzentrat und Destillat werden entweder in einer Vorlage aufgefangen oder über eine Pumpe kontinuierlich ausgetragen.

Zur Einstellung der gewünschten Prozessbedingungen wie Druck und Temperatur werden Vakuumpumpen sowie zur Beheizung, Verdampfung und Kondensation Thermostate (Labor- und Pilotmaßstab) eingesetzt. Im Produktionsmaßstab greift man auf klassische Energieträger wie Dampf, Thermalöl beziehungsweise Kühlwasser, Sole und Glykol zurück. Über eine Kühlfalle wird unerwünschter Eintrag von Leichtsiedern aus dem Abgasstrom in das Vakuumpumpsystem reduziert.

- Kompakte Verdampfungsapparate und -systeme mit geringem Hold-Up und entsprechend kurzer Verweilzeit mit enger Verteilung und schonenden Betriebsbedingungen für:
 - Labor- und Pilotsysteme aus Edelstahl mit Borosilikatglas 3.3 in standardisierter modularer Ausführung, optional prozess- und kundenspezifische Anpassungen
 - Produktionssysteme aus Edelstahl in prozess- und kundenspezifischer Ausführung
- Modular ergänzende Verdampfersysteme nach Prozessanforderungen, beispielsweise:
 - Nachgeschaltete Verdampfer, z.B. System ETF-ESF
 - Brüdenseitige Rektifikationskolonne, System EFR
- Prozess- und kundenspezifische Randbedingungen,
 z.B. ATEX, DGRL, FDA, GAMP, ASME, UL-Normen
- Geeignet für Medien mit erhöhten Anforderungen:
 - Niederviskose Medien
 - Wärmeempfindliche Medien
 - Feststoffhaltige Medien
 - Größere Feedmengen, insbesondere mit hohem Leichtsiederanteil
- Machbarkeitsstudien mit Tests und Überprüfung des Scale-Up oder vorhandene Expertise für typische Anwendungen:
 - Nahrungsmittel, z.B. Kaffee und Milchprodukte, aber auch Vitamine
 - Aroma- und Duftstoffe
 - Fettsäuren
 - Prozessabwasser
 - zahlreiche weitere Produkte aus dem Bereich

FALLFILMVERDAMPFER, SYSTEM EFF LABOR- UND PILOTVERDAMPFERSYSTEME SOWIE VORVERSUCHE

Für viele Anwendungen sind neben der Zusammensetzung von Destillat und/oder Rückstand bzw. Konzentrat auch Produkteigenschaften wie Geruch und Farbe relevant. Ebenfalls müssen mögliche Effekte, die bei der Verdampfung auftreten können, wie z. B. Schaumbildung oder Fouling auf

der Wärmeübertragungsfläche berücksichtigt werden. Die letztgenannten Eigenschaften lassen sich nicht theoretisch ermitteln oder abschätzen, sondern erfordern die Möglichkeit einer visuellen Beurteilung des Verdampfungsprozesses. Dies lässt sich am besten in Glasanlagen von COROSYS umsetzen, die nach einem Baukastensystem individuell zusammengestellt werden können.

Ist die prinzipielle Machbarkeit festgestellt, sind zur Aus-

legung einer Produktionsanlage die Prozessparameter zu verifizieren, d.h. Wärmeübergang und maximale flächenbezogene Verdampfungsraten bzw. praktische Stufenzahl sowie die erreichbaren Ausbeuten und Qualitäten sind zu bestimmen. Hierfür hat COROSYS eine standardisierte Baureihe von Pilotanlagen aus Edelstahl (optional auch Sonderwerkstoffe) in verschiedenen Größen und Ausführungen zur Auswahl.

Für neue Verdampfungs- oder Destillationsaufgaben bietet COROSYS in-house Dienstleistungen beginnend bei der Literaturrecherche über thermodynamische Simulationen und Laborversuche bis hin zu Pilotierungen von Einzelsystemen oder Kombinationen von Fallfilm-(EFF), Dünnschicht-(ETF) und Kurzwegverdampfer (ESF), wenn erforderlich auch in Kombination mit Rektifikation (ERF) an.

Die Hauptziele und Möglichkeiten von Vorstudien/Testdestillationen sowie Labor- und Pilotanlagen sind nochmals in der nachfolgenden Tabelle kurz und übersichtlich zusammengefasst:

VORSTUDIEN/TESTDESTILLATIONEN	LABORSYSTEME	PILOTSYSTEME
Literatur- / Patentrecherche Bestimmung von Stoffdaten Thermodynamische Modellie- rung von Verdampfung/Rektifikation	Machbarkeitsüberprüfung	Detaillierte Prozessdatenermittlung basierend auf Machbarkeitsstudie und vorabgestimmtem Verdampfersystem
Edelstahl mit Borosilikatglas 3.3	Edelstahl mit Borosilikatglas 3.3, optional andere Werkstoffe	Edelstahl, optional andere Werkstoffe
Versuche zur Festellung der Machbarkeit / Trennschärfe	Laborversuche meist mit einem vorausgewähl- ten Filmverdampfersystem	Engineering der Produktionsanlage mit Di- mensionierung der Apparate und Medien
Vergleich der verschiedenen Filmverdampfersysteme und anschließende Vorauswahl	Bestimmung der Richtprozessparameter sowie erreichbaren Ausbeuten und Qualitäten	Detaillierte Bestimmung der Prozess-para- meter sowie erreichbaren Ausbeuten und Qualitäten
Optische Begutachtung des Systemverhaltens (Farbe, Geruch, Schaum, Feststoffe, Ablagerungen,)	Berücksichtigung und optische Begutachtung des Systemverhaltens (Farbe, Geruch, Schaum, Feststoffe,)	Berücksichtigung des Systemverhaltens (Farbe, Geruch, Schaum, Feststoffe, Ablagerungen,)
Abstimmung der Analytik	Mustermengen oder Kleinstproduktionsmengen	Größere Mustermengen oder Kleinproduk- tionsmengen

FALLFILMVERDAMPFER, SYSTEM EFF STANDARDSYSTEME UND OPTIONEN FÜR LABOR- UND PILOTSYSTEME

allfilmverdampfer für den Labor- und Pilotbereich können aus zahlreichen Modulen und Optionen zusammengestellt werden. Die nachfolgende Tabelle soll die Möglichkeiten zeigen und damit die Konzepterstellung unterstützen. Für eine detaillierte Charakterisierung mit Prozessanforderungen steht ergänzend der Fragebogen für Verdampferprozesse zur Verfügung.

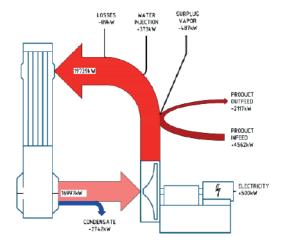
TECHNISCHE SPEZIFIKATION LABOR- UND PILOTVERDAMPFER

BEREICH	VERDAMPFER	AUSTAUSCHFLÄCHE	DURCHMESSER	LÄNGE BEHEIZT	MATERIAL	FEEDBEREICH
		[m²]	[DN]	[mm]		[kg/h]
Labor	EFF 0008-G	0,08 m²	DN 25	ca. 1.000	Edelstahl / Boro 3.3	0,5 - 6
Labor	EFF 0025-G	0,25 m²	DN 50	ca. 1.500	Edelstahl / Boro 3.3	1 - 12
Labor	EFF 0040-G	0,4 m²	DN 80	ca. 1.500	Edelstahl / Boro 3.3	1,5 - 18
Pilot / Kleinproduktion	EFF 0100-S	1,0 m²	DN 125	ca. 1.500	Edelstahl	7 - 60
Pilot / Kleinproduktion	EFF 0300-S	3,0 m²	DN 200	ca. 1.800	Edelstahl	20 - 200
Pilot / Kleinproduktion	EFF 0600-S	6,0 m²	DN 250	ca. 2.200	Edelstahl	30 - 350

BEREICH	OP	TION
Richtlinien		zul. Betriebsbedingungen (Produkt)
		/ barg &/ °C
		ATEX-Richtlinie 2014/34EU,
		EX-Zone/ (innen/außen), II, T
		GMP-Richtlinien
		Sonstige Richtlinien
Werkstoff		G - Edelstahl (1.4571/1.4404) / Borosilikatglas 3.3
		S - Edelstahl (1.4571/1.4404)
		X - alternativer Werkstoff
Feed		F1 - Dosiertropftrichter
		F2 - Pumpe
		F3 - Vorlage für Pumpbetrieb
		F5 - Flash-Box für Pumpbetrieb
		FX - andere Feedoptionen
Verdampfer		E1S - Einzügiger Verdampfer
		E1M - Mehrzügiger Verdampfer, Anzahl Züge
		E2M - Energierückgewinnung, mehrstufig
		E2C - Energierückgewinnung, mechanische Brüden-
		kompression
		E2X - Energierückgewinnung, alternative
Vakuumsystem		V1 - Drehschieberpumpe, ca. 0,1 - 10 mbara
		V2 - Membranvakuumpumpe,
		ca. 10 - 1.000 mbara
		VX - Kombination andere Vakuumpumpen, ge-
		wünschte Menge Nm³/h und
		Betriebsdruck mbara

BEREICH	ОРТ	ION
Kühlfalle		C1 - Kühlfalle, Boro 3.3, für Trockeneis oder flüssigen
		Stickstoff
		C2 - Kühlfalle, SS, für Trockeneis oder flüssigen
		Stickstoff
		C3 - Kühlfalle, SS/Boro 3.3, elektrisch
Austrag Konz.		A1 - Austrag in Spinne (3-fach)
& Destillat		A2 - Austrag in Glaskolben
		A3 - Austrag in Schnittmeßgefäß
		A4 - Austragspumpe
Temperierung		T1 - Feed
		T2 - Verdampfer
		T3 - Kondensator
		T4 - Kühlfalle
		T5 - Austrag Destillat
		T6 - Austrag Konzentrat
		TX - Andere
Sonstiges		S1 - Gestell Edelstahl, fahrbar, mit Auffangwanne,
		L, P ohne Schutzverkleidung
		S1X - gewünschte Abweichungen
		S2 - Manuelle Bedienung, örtliche Anzeige Tempe-
		ratur & Druck, L, P Not-Aus Schalter
		S2X - gewünschte Abweichungen
		, ,

¹⁾ T = Thermostat S= Steam E=Electrical C= Cooling Media CW=Cooling Water



FALLFILMVERDAMPFER, SYSTEM EFF VERDAMPFERSYSTEME IM PRODUKTIONSMASSSTAB

Für viele bekannte Anwendungen und auch zahlreiche neue Prozesse, die vorab über Studien und Versuche dimensioniert wurden, werden Verdampfersysteme im Produktionsmaßstab realisiert. Die Produktionsanlagen werden bevorzugt als Package-Unit ausgeführt, dies rechanische Brüdenkompression. Exemplarisch ist dies in der nachfolgenden Grafik für einen Prozess mit 30 t/h zu verdampfendes Wasser dargestellt.

Außerdem werden oft auch spezifische zyklische Rei-

duziert zum einen den Planungsaufwand und zum anderen vor allem die Aufbau- und Inbetriebnahmedauer vor Ort beim Kunden.

Die Verdampfersysteme im Produktionsmaßstab werden individuell für die Kundenprozesse dimensioniert, die typischen und häufigsten Verdampfergrößen liegen im Bereich von 2,5 m² bis über 1.000 m². Für größere Anlagen wird versucht eine für den jeweiligen Prozess geeignete Wärmerückgewinnung zu integrieren, beispielsweise durch mehrstufige Verdampfung oder me-

nigungsprozesse benötigt, die wir gerne mit Ihnen zusammen erarbeiten.

Grundsätzlich sind auch eine Feinbearbeitung der produktberührenden Flächen sowie der Einsatz alternativer Werkstoffe möglich.

Der Bau der Produktionssysteme erfolgt unter Beachtung der erforderlichen Richtlinien wie DGRL 2014/68 EU oder ASME, ATEX 2014/34 EU, UL-Normen, GMP-Richtlinien, TA-Luft und der Maschinenrichtlinie 2006/42/EG.